

Ludwigsburger Gymnasien als Mentoring-Schulen:

Was ist ein guter Versuch?

Was ist ein guter Versuch?

Was ist ein guter Versuch?

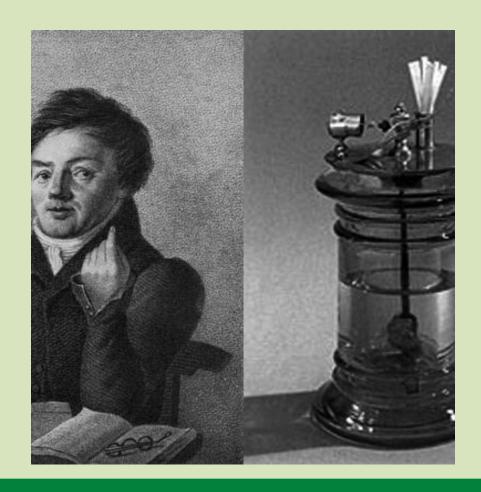
Die Lehrkraft entscheidet, was ein guter Versuch ist!

Organisation der Versuche

Ausgewählte Versuche zum Thema Katalyse

- 1. Der Klassiker:
 - Oxidation von Wasserstoff in Variationen
- Quantitative Untersuchung.Wasserstoffperoxid- Zersetzung
- 3. Mehr oder weniger selektiv: Dehydratisierung und Hydrierung
- 4. Regelung statt Steuerung:Die λ- Sonden- Steuerung

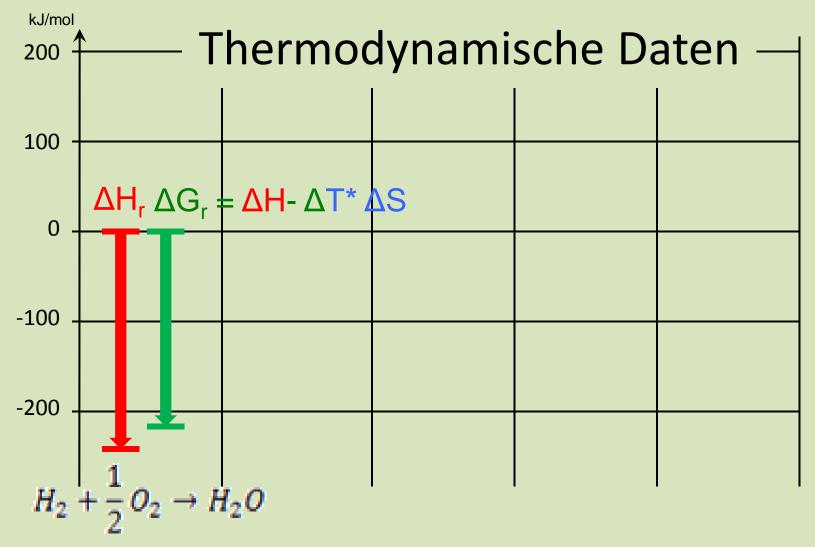
Katalysatoren im Schülerversuch:


Der bekannteste Versuch zur Katalyse:

Wasserstoffoxidation

$$2 H_2 + O_2 \longrightarrow 2 H_2O$$

Fragestellung: Was treibt


diese Reaktion an?

Ludwigsburger Gymnasien als Mentoring-Schulen:

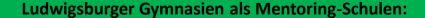
Wasserstoffoxidation in der Brennstoffzelle

$$2 H_2 + O_2 \longrightarrow 2 H_2O$$

Fragestellungen:

- Leistung
- Wirkungsgrad

Wasserstoffoxidation in der Brennstoffzelle


$$2 H_2 + O_2 \longrightarrow 2 H_2O$$

Fragestellungen:

- Leistung?
- Wirkungsgrad?

Problem: Wasserstoff ist "nur" ein Energieträger

Energetik und Kinetik des H_2O_2 - Zerfalls $H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$

Vergleich der praktischen Ergebnisse mit den energetischen Werten und den möglichen kinetischen Gesetzmäßigkeiten

Ludwigsburger Gymnasien als Mentoring-Schulen:

Energetik des H_2O_2 - Zerfalls $H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$

Energetik:

$$\Delta H = -\Delta Q = -c \cdot m \cdot \Delta T$$

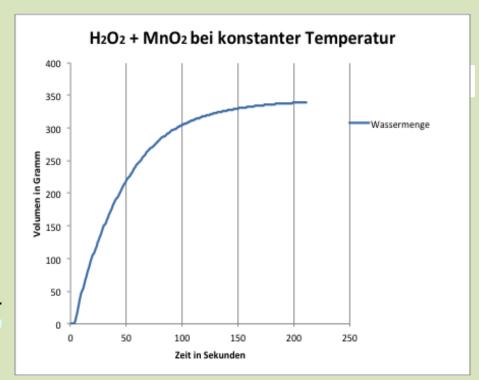
- Bestimmen der Stoffmenge an Sauerstoff
- Verfolgen der Temperatur

$$\frac{\Delta H_r}{H_m} = \frac{V_{O_2}}{\frac{1}{2} V_{mO_2}}$$

Kinetik des H₂O₂- Zerfalls $H_{2}O_{2} \rightarrow H_{2}O + \frac{1}{2}O_{2}$

Kinetik:

Reaktionsordnungen:


0. Ordnung:
$$c_{(t)} = k \cdot t$$

1. Ordnung:
$$c_{(t)} = c_{(0)} e^{-kt}$$

$$V_{(t)} = \mathbb{C}K \cdot C_{(t)}$$

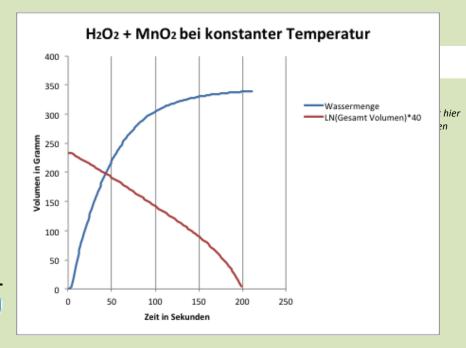
$$v_{(t)} = \mathbb{I} k \cdot c_{(t)}$$
2. Ordnung $c(t) = \frac{c(0)}{1 + k \cdot t \cdot c(0)}$

$$v_{(t)} = k \cdot c_{(t)}^{2}$$

Kinetik des H₂O₂- Zerfalls $H_{2}O_{2} \rightarrow H_{2}O + \frac{1}{2}O_{2}$

Kinetik:

Reaktionsordnungen:

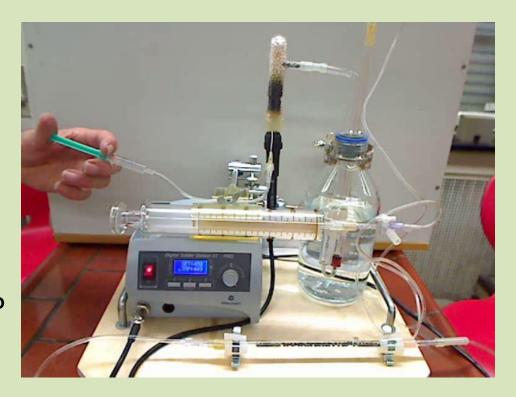

0. Ordnung:
$$c_{(t)} = k \cdot t$$

1. Ordnung:
$$c_{(t)} = c_{(0)} e^{-kt}$$

$$V_{(t)} = 2k \cdot C_{(t)}$$

$$v_{(t)} = \mathbb{I} k \cdot c_{(t)}$$
2. Ordnung $c(t) = \frac{c(0)}{1 + k \cdot t \cdot c(0)}$

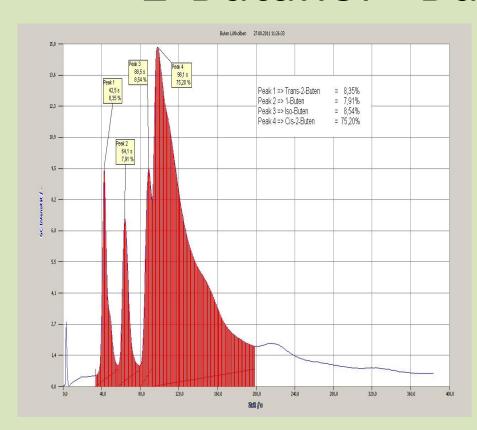
$$v_{(t)} = k \cdot c_{(t)}^{2}$$

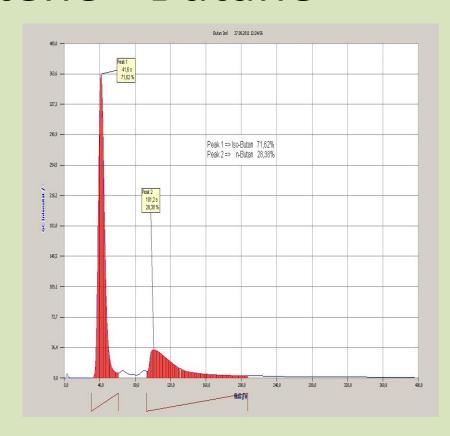


2-Butanol - Butene - Butane

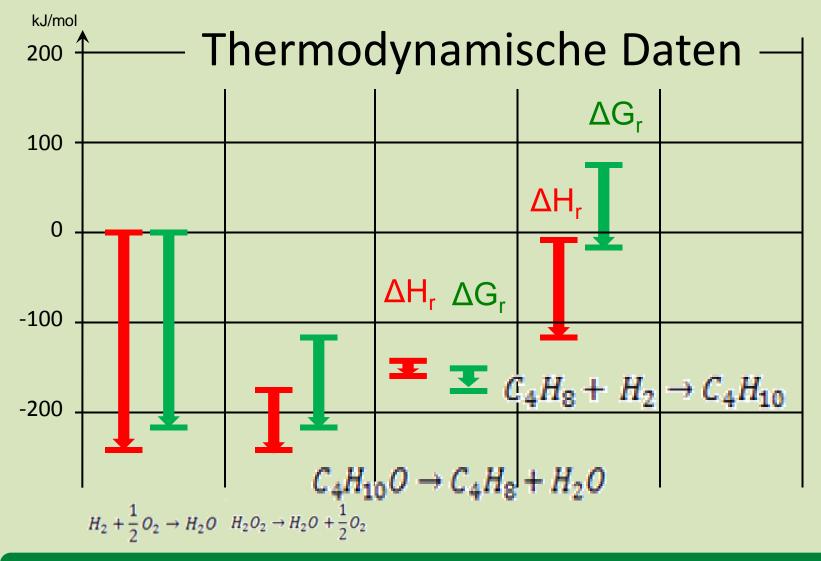
Vorüberlegungen:

H₃C-CH-CH₂-CH₃-OH

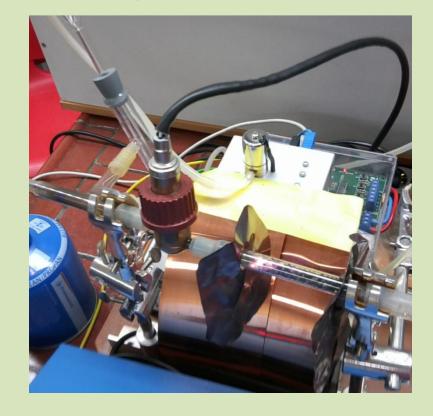

- Energetik dieser Reaktion?
- Beeinflussung durchTemperaturerhöhung?
- Sind verschiedeneReaktionsprodukte möglich?

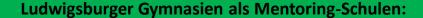


2-Butanol - Butene - Butane


Butene aus 2-Butanol

Butane aus Butenen

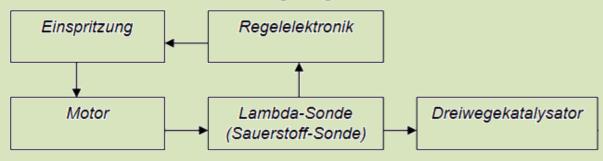

Katalytische Nachverbrennung: Regelung der Luftzufuhr mit Hilfe einer λ-Sonden- Steuerung

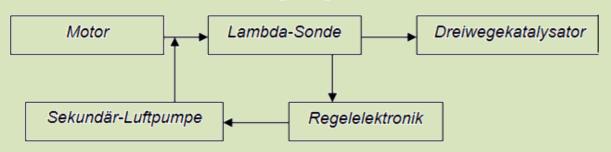

Aufgabenstellung:

- Energetik der katalytischen Verbrennung
- Regelung der Verbrennung mit Hilfe einer λ-Sonde

Teilreaktionen:

$$C_xH_y + (x+y/4) O_2$$
 \rightarrow
 $x CO_2 + \frac{Y}{2}H_2O$
 $2 CO + O_2$ \rightarrow $2 CO_2$

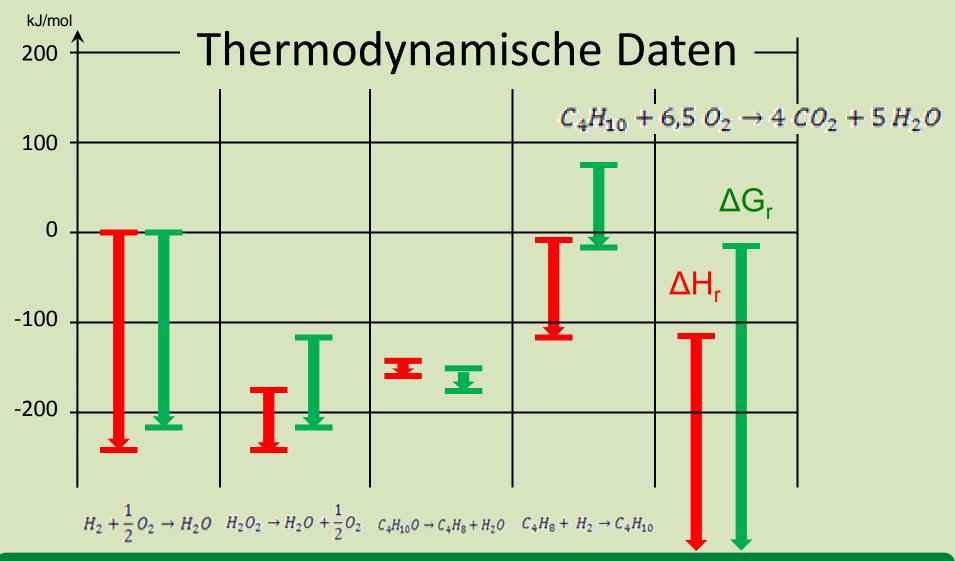




Katalytische Nachverbrennung: Regelung der Luftzufuhr mit Hilfe einer λ-Sondensteuerung

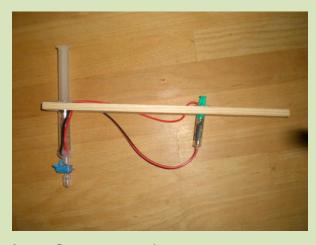
Schema der Sauerstoffsonden-Regelung im Automobil:

Schema der Sauerstoffsonden-Regelung am Modellversuch:



G. Greiner, B. Horlacher, M. Öttinger, Stuttgart

Ludwigsburger Gymnasien als Mentoring-Schulen:



Physik und Chemie der Spritzenkanone

Schieße mit der Kanone mit einer Butan/Luft-Mischung

(Butangehalt ca. 5 %)

Problem:

Sek I: Butan (C₄H₁₀) soll mit

Luft reagieren.

Volumenverhältnis der Gase

für eine vollständige

Reaktion?

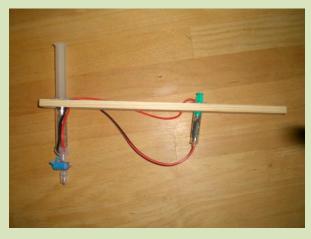
Sek II / Studis:

Wo wird mehr Energie frei?

(bei gleichem Volumen):

Knallgasgemisch oder

stöchiometrisches Butan/


Sauerstoffgemisch?

Energetische Begründung!

Physik und Chemie der Spritzenkanone

Schieße mit der Kanone mit einer Butan/Luft-Mischung

(Butangehalt ca. 5 %)

Problem: Es gibt (noch) keinen

geeigneten Katalysator

Sek I: Butan (C₄H₁₀) soll mit

Luft reagieren.

Volumenverhältnis der Gase

für eine vollständige

Reaktion?

Sek II / Studis:

Wo wird mehr Energie frei?

(bei gleichem Volumen):

Knallgasgemisch oder

stöchiometrisches Butan/

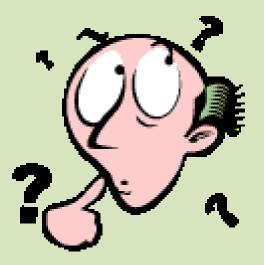
Sauerstoffgemisch?

Energetische Begründung!

Materialien zum downloaden unter:

http://www.mine-mint.de/veroeffentlichungen/kepler-seminar/

Anregungen / Wünsche / Bemerkungen an:


horlacher@heidehof-stiftung.de

Ludwigsburger Gymnasien als Mentoring-Schulen:

Katalysatoren im Unterricht

Noch Fragen?

